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Abstract 
 A novel coronavirus (SARS-CoV-2) has devastated the globe as a pandemic that has killed 
millions of people. Widespread vaccination is still uncertain, so many scientific efforts have been 
directed toward discovering antiviral treatments. Many drugs are being investigated to inhibit the 
coronavirus main protease, 3CLpro, from cleaving its viral polyprotein, but few publications have 
addressed this protease’s interactions with the host proteome or their probable contribution to 
virulence. Too few host protein cleavages have been experimentally verified to fully understand 
3CLpro’s global effects on relevant cellular pathways and tissues. Here, I set out to determine this 
protease’s targets and corresponding potential drug targets. Using a neural network trained on 
cleavages from 392 coronavirus proteomes with a Matthews correlation coefficient of 0.985, I predict 
that a large proportion of the human proteome is vulnerable to 3CLpro, with 4,898 out of approximately 
20,000 human proteins containing at least one putative cleavage site. These cleavages are nonrandomly 
distributed and are enriched in the epithelium along the respiratory tract, brain, testis, plasma, and 
immune tissues and depleted in olfactory and gustatory receptors despite the prevalence of anosmia 
and ageusia in COVID-19 patients. Affected cellular pathways include cytoskeleton/motor/cell adhesion 
proteins, nuclear condensation and other epigenetics, host transcription and RNAi, ribosomal 
stoichiometry and nascent-chain detection and degradation, ubiquitination, pattern recognition 
receptors, coagulation, lipoproteins, redox, and apoptosis. This whole proteome cleavage prediction 
demonstrates the importance of 3CLpro in expected and nontrivial pathways affecting virulence, lead 
me to propose more than a dozen potential therapeutic targets against coronaviruses, and should 
therefore be applied to all viral proteases and subsequently experimentally verified. 
 
Introduction 

Coronaviruses are enveloped, positive-sense, single-stranded RNA viruses with giant genomes 
(26-32 kb) that cause diseases in many mammals and birds. Since 2002, three human coronavirus 
outbreaks have occurred: severe acute respiratory syndrome (SARS) in 2002-2004, Middle East 
respiratory syndrome (MERS) from 2012 to present, and coronavirus disease 2019 (COVID-19) from 
2019 to present. The virus that causes the latter disease, SARS-CoV-2, was first thought to directly infect 
the lower respiratory epithelium and cause pneumonia in susceptible individuals. The most common 
symptoms include fever, fatigue, nonproductive or productive cough, myalgia, anosmia, ageusia, and 
shortness of breath. More recently, however, correlations between atypical symptoms (chills, arthralgia, 
diarrhea, conjunctivitis, headache, dizziness, nausea, severe confusion, stroke, and seizure) and severity 
of subsequent respiratory symptoms and mortality have motivated researchers to investigate additional 
tissues that may be infected. One way to explain these symptoms and associated cellular pathways is to 
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review enrichment and depletion in virus-host interaction networks, particularly those including the 
coronavirus proteases. 

Angiotensin-converting enzyme 2 (ACE2), the main receptor for SARS-CoV-1 and -2, has been 
shown to be less expressed in lung than in many other tissues. Respiratory coronaviruses likely first 
infect the nasal epithelium and tongue[1] and then work their way down to the lung and/or up through 
the cribriform plate to the olfactory bulb, through the rhinencephalon, and finally to the brainstem.[2-5] 
Additionally, based on ACE2 expression and in vitro and in vivo models, multiple parts of the 
gastrointestinal tract (mainly small and large intestine, duodenum, rectum, and esophagus; less 
appendix and stomach) and accessory organs (mainly gallbladder, pancreas, liver,[6, 7] salivary gland[8]; 
less tongue and spleen),[9] kidney,[10] male and female reproductive tissues,[11, 12] heart,[13] immune 
cells,[14, 15] and adipose tissue[16-18] may be infectible with corresponding symptoms and 
comorbidities. 

Coronaviruses have two main open reading frames, orf1a and orf1b, separated by a ribosomal 
frameshift and resulting in two large polyproteins, pp1a and pp1ab, containing proteins including two 
cysteine proteases,[19] an RNA-dependent RNA polymerase, and other nonstructural proteins (nsp1-
16). The main function of these proteases is to cleave the polyproteins into their individual proteins to 
form the transcription/replication complex, making them excellent targets for antiviral drug 
development.[20-23] The papain-like protease (PLpro) and 3 chymotrypsin-like protease (3CLpro) only 
have 3 and 11 cleavage sites, respectively, in the polyproteins, but it is reasonable to assume that both 
proteases may cleave host cell proteins to modulate the innate immune response and enhance virulence 
as in picornaviruses and retroviruses, such as human immunodeficiency virus (HIV). 

PLpro is a highly conserved protein domain that has been shown to determine virulence of 
coronaviruses[24] and possess deubiquinating and deISGylating activity including cleaving ISG15 induced 
by interferon via the JAK-STAT pathway from ubiquitin-conjugating enzymes and potentially from 
downstream effectors.[25-29] PLpro deubiquination also prevents activating phosphorylation of IRF3 
and subsequent type I interferon production,[30, 31] however the ubiquitinated leucine in human IRF3 
is replaced by a serine in bats likely including Rhinolophus affinus (intermediate horseshoe bat), the 
probable species of origin of SARS-CoV-2.[32, 33] 

3CLpro is also highly conserved among coronaviruses; SARS-CoV-2 3CLpro is 96.08% and 50.65% 
identical, respectively, to the SARS- and MERS-CoV homologs, the former with only 12 out of 306 amino 
acids substituted with all 12 outside the catalytic dyad or surrounding pockets.[34-36] Even the most 
distant porcine deltacoronavirus HKU15 3CLpro shares only 34.97% identity yet is similarly conserved in 
the these important residues. This conservation indicates that all these proteases are capable of cleaving 
similar sequences no matter the protease genus of origin. In addition to the 11 sites in the polyproteins, 
these proteases are known to cleave host proteins including STAT2,[37] NEMO,[38] NLRP12, and 
TAB1[39] to modulate interferon signaling. Similar proteases have been studied in the other members of 
Nidovirales[40] and the related Picornavirales,[41-45] with foot-and-mouth disease virus (FMDV) 3Cpro 
cleaving histone H3,[46, 47] poliovirus 3Cpro cleaving TFIID and TFIIIC,[48-52] and polio- and rhinovirus 
but not cardiovirus 3Cpro cleaving MAP4.[53, 54] These results, however, have not been reproduced for 
SARS-CoV-2 yet, and STAT2, NEMO, NLRP12, TAB1, H3, TFIIIC, TFIID, and MAP4 are only a few of many 
cleaved proteins. 

The high number of 3CLpro cleavages in coronavirus polyproteins has, however, allowed for 
sequence logos and resulting sequence rules and training of decision trees and neural networks (NN) for 
additional cleavage site prediction.[55-60] Notably, Kiemer et al.’s NN[59] based on Blom et al.’s 
equivalent picornaviral NN[60] was trained on 7 arbitrary coronavirus genomes, totaling 77 cleavages, 
and had a Matthews correlation coefficient (MCC) of 0.84, much higher than the traditional consensus 
pattern’s 0.37 for the same training set size. They predicted cleavage sites in select host proteins, 
namely the transcription factors CREB-RP, OCT-1, and multiple subunits of TFIID, the innate immune 
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modulators IFI6 and IRAK-1, the epithelial ion channels CFTR and SCNN1D, the tumor suppressors 
p53BP1/2 (although not p53 itself), RNA polymerase subunits RPA1 and RPC1, eIF4G1, the cytoskeletal 
proteins MAP4 and MAPRE1/3, and many members of the ubiquitin pathway (USP1/4/5/9X/9Y/13/26 
and SOCS6). 

Additionally, Yang’s decision trees[58] were trained on 4 amino acid sliding windows and 
substitution matrix similarity score-based embeddings, achieved MCCs up to 0.95, but were limited to 
only 18 coronavirus polyproteins. The embedding-derived non-orthogonality somewhat stabilized the 
prediction to small changes in sequence assuming the substitution matrix reflects how the cleavages 
evolve. Decision trees have the benefit of being symbolic and explainable but often predict suboptimally 
when presented with interpolated or extrapolated inputs, making alternative machine learning 
techniques more attractive for predicting human protein cleavage prediction. For example, Narayanan 
et al.[61] and later Singh et al.[62] demonstrated that neural networks outperform decision trees for HIV 
and hepatitis C virus (HCV) protease cleavage prediction. Additional mixed methods such as Li et al.’s 
nonlinear dimensionality reduction and subsequent support vector machine (SVM) are able to retain 
some of the benefits of both linear and nonlinear classifiers.[63] Rognvaldsson et al.[64, 65] argue that 
nonlinear models including neural networks should not be used for cleavage prediction, however the 
HIV dataset from Cai et al.[66] that they used and their expanded dataset only included 299 and 746 
samples, respectively. Additionally, physiochemical or structural encodings have outperformed one-hot 
encoding (also called orthogonal encoding) for their small HIV datasets[67] and have moreover 
eliminated differences between linear and nonlinear classifiers in an equivalent HCV dataset with 891 
samples.[68] To my knowledge no one has expanded the 3CLpro cleavage dataset to the point where 
nonlinearity becomes significant, investigated the entire human proteome for 3CLpro cleavages sites 
with any method, or performed enrichment analysis and classification of these affected proteins. 
 
Methodology 

Dataset Preparation 
A complete, manually reviewed human proteome containing 20,350 sequences (not including 

alternative isoforms) was retrieved from UniProt/Swiss-Prot (proteome:up000005640 AND 
reviewed:yes).[69] 

Coronavirus polyprotein sequences were collected from GenBank.[70] Searching for “orf1ab,” 
“pp1ab,” and “1ab” within the family Coronaviridae returned 391 different, complete polyproteins, and 
an additional polyprotein sequence from the monotypic Microhyla letovirus 1 was derived from 
accession number GECV01031551.[71] These polyproteins each contained 11 cleavages manually 
discovered using the Clustal Omega multiple sequence alignment server,[72-74] totaling 4,312 balanced 
cleavages (Figure 1). P1 glutamines and histidines were unambiguously conserved when aligned to 
known cleavages in SARS, SARS-CoV-2, MERS, IBV, etc., and all remaining glutamines and histidines were 
considered to be uncleaved. Although some of the ten amino acid sequences surrounding the cleavages 
were identical (805 different sites total), all 4,312 balanced positive cleavages were used for subsequent 
classifier training in addition to all other different, uncleaved sequences with P1 glutamines (18,477) and 
histidines (12,128), totaling 34,917 samples. 
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Figure 1: 3CLpro cleavage site sequence logo plotted by WebLogo v2.8.2.[75] 

 
Dataset Characterization 
Here I assumed that SARS-CoV-2 3CLpro is capable of cleaving all aligned cleavages between all 

genera of coronaviruses (Alpha-, Beta-, Gamma-, and Deltacoronavirus and the monotypic 
Alphaletovirus) because variation in cleavage sequences is greater within polyproteins than between 
them (Figures 2 and 3) no matter the existence of protease/cleavage cophylogeny (Figure 4).[76] Figures 
1c and 1d demonstrate that the same 11 clusters appear when a lower-dimensionality physiochemical 
encoding (with dimensionality 40 containing normalized volumes, interface and octanol hydrophobicity 
scales, and isoelectric points) is used, however this dataset is large enough that one-hot encoding (200 
dimensional binary input) outperforms it. 

 

 
Figure 2: (A) One-hot encoded t-distributed stochastic neighbor embedding (t-SNE)[77] vs cleavage 

number and (B) vs genus demonstrating that variation within genomes is more important than variation 
between genomes. (C) Physiochemical encoded t-SNE vs cleavage number and (D) vs genus showing 

similar clustering although with worse separation. 
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Figure 3: (A) Information content vs residue position vs cleavage number and (B) vs genus similarly 

demonstrating that cleavage variation within single genomes is more important than variation between 
genomes. 

 
Figure 4: Unscaled subgenera-averaged tanglegram of 3CLpro and respective cleavages based on 

BLOSUM62 substitution matrix similarity scores with and without default affine gap penalties (opening 
10 and extension 0.2). 

 
Model and Hyperparameter Optimization 
The NetCorona 1.0 server as in Kiemer et al.’s work,[59] my reproductions of their sequence 

logo-derived rules and NN, and my improved sequence logo-based logistic regression and naïve Bayes 
classification and NNs were optimized and compared to decide which model to use for prediction of 
human cleavage sites.[78] Kiemer et al.’s seven genome sequence logo and multilayer perceptron used 
one-hot encoding for the 10 amino acid window surrounding each cleavage (linearizing 10 amino acids 
resulted in an input of 200 bits).[59] First, logistic regression was performed on the logit of the 
probability output of the sequence logo (as opposed to Chou et al.’s manual probability cutoff setting by 
maximizing an unbalanced measure of accuracy[79]) with a nonzero but optimally extremely small 
pseudocount and returned an MCC of 0.825 with 74.0% recall. Updating the sequence logo with all 
known cleavages (Figure 1) improved its MCC to 0.931 with 94.1% recall. A naïve Bayes classifier was 
additionally constructed from both the positive and negative sequence logos and slightly improved the 
MCC to 0.935 with 94.0% recall. Figure 5 demonstrates correlations (represented as the mutual 
information variant known as total entropy correlation coefficients or symmetric uncertainties) between 
positions that are not captured by simple sequence logos and classifiers assuming independence.[80, 81] 
NNs, however, allow inclusion of 2D and higher-order correlations not easily visualizable and therefore 
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often improve accuracy. Finally, in addition to information content, Figure 6 shows a charge-polarity-
hydrophobicity scale with no obvious trend, reaffirming why one-hot encoding performs can achieve a 
higher MCC than any physiochemical, lower-dimensional encoding for NNs when the training set is large 
enough. 

 

 
Figure 5: Entropy correlation coefficients (also known as symmetric uncertainties) between positions 

within the improved sequence logo. 

  
Figure 6: Sequence bundle with charge-polarity-hydrophobicity encoding.[82] 

 
As for my improvements to the NN, note that Kiemer et al.’s MCC of 0.840 is an average from 

triple cross-validation (CV).[59] Because the known cleavage dataset is small, no data went unused; the 
three NN output scores were averaged and similarly considered cleavages when greater than 0.5. 
Retraining the same NN structures (each with one hidden layer with 2 neurons) on the larger dataset 
resulted in three-average CV MCC of 0.968, a significant improvement even though the datasets are less 
balanced. This MCC was maintained after adding all other histidines (which precede 20/805 different 
cleavages) as negatives. Interestingly, two infectious bronchitis viruses (Igacovirus, Gammacoronavirus) 
and one wigeon coronavirus HKU20 (Andecovirus, Deltacoronavirus) contained cleavages following 
leucine, methionine, and arginine (VSKLL^AGFKK in APY26744.1, LVDYM^AGFKK and DAALR^NNELM in 
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ADV71773.1, and AIRCR^NNELM in YP_005352870.1). To my knowledge, synthetic tetra/octapeptides 
have been cleaved following histidine, phenylalanine, tryptophan, methionine, and possibly proline 
residues,[56, 83] but only one natural histidine substitution has been documented in HCoV-HKU1[84] 
and likely does not affect function.[85-87] 

To optimize hyperparameters, the whole dataset was repeatedly split into 80% training/20% 
testing sets with further splitting of the 80% training set for cross-validation. The optimal settings, no 
oversampling (within training folds[88]), limited-memory Broyden-Fletcher-Goldfarb-Shanno (lbfgs) 
solver, rectifier (ReLU) activation, 0.00001 regularization, and 1 hidden layer with 10 neurons, had an 
average 20% test set MCC of 0.976 when split and trained many times. Train/test sets repeatedly split 
with different ratios in Figure 7 demonstrate that the entire dataset is not required for adequate 
performance for all three classification methods, although my final method used all the data to 
maximize accuracy. Note that any errors in these predictions are amplified when applied to the whole 
human proteome as below but that enrichment/depletion statistics proved robust against this 
variability. Similarly careful optimization and bias and variance characterization should again be 
performed if this type of analysis is to be repeated on other protease datasets. Also note that Figure 7 
displays a curve for a physiochemical encoding (also used in Figures 1c and 1d) underperforming when 
compared to one-hot encoding even at relatively small training sizes. Of the four physiochemical scales 
used, octanol hydrophobicity alone reached an MCC of 0.959, and, in the order of importance, addition 
of volume, interface hydrophobicity, and isoelectric point features increased the maximum MCC to 
0.977. 

 

 
Figure 7: Random train/test split fraction vs MCC demonstrating that performance quickly approaches a 

limit for all classifiers. 
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 Given that protease cleavage datasets are relatively small and training individual models is 
computationally inexpensive, combining multiple models into ensembles is recommended to reduce 
variability and at least slightly improve accuracy. The cross-validation described above is itself an 
ensemble that improves accuracy by introducing diversity in resampling like bootstrap aggregating. In 
addition to resampling methods, averaging ensembles of networks trained on the same dataset but 
initialized differently were able to improve accuracies as recently discovered in benchmark datasets.[89] 
Without an obvious upper bound on ensemble complexity, the final model used for subsequent analyses 
was an average from 10 sets of 100-fold cross-validated networks. The extremely few sequences 
incorrectly labeled varied with retraining and were not overrepresented in any lineage; in essence there 
was no distinction between easy-to-learn and hard-to-learn samples. The average 20% test MCC of this 
size ensemble was 0.985, although the final ensemble used the entire dataset. 
 Model Robustness 

Even with the extremely high accuracies of models trained on this large dataset, randomly 
train/test splitting does not account for any taxonomic biases. One can easily imagine that extending 
this training dataset to the entire order Nidovirales or even the class Pisoniviricetes may not improve 
SARS-CoV-2 protease prediction without some (co)phylogenetic weighting or complex resampling 
algorithms and experimental verification. A novel leave-one-(sub)genus-out resampling analysis (using 
the final NN architecture and one-hot encoding) summarized in Table 1 affirms that more divergent 
lineages are more difficult to accurately predict, but that leaving out whole Sarbecovirus and 
Betacoronavirus resulted in the MCCs 0.865 and 0.835, still rivaling accuracies in previous publications. 
Alternatively, initially training on only Sarbecovirus sequences and progressively expanding the training 
set phylogenetically to Milecovirus only reduced Sarbecovirus-specific MCCs from 0.996 to 0.989 while 
increasing all other subgenera-specific MCCs to similar values. This again affirms that the entire dataset 
should be used and that diversity between the 11 cleavages is more important than between lineage. 

 
Table 1: Leave-one-(sub)genus-out resampling vs number of samples and MCCs showing that complete 

removal of distinct sequences of any lineage from the training set can reduce that lineage’s test 
accuracy independent of the number of number of positives and negatives or their imbalance. 

Genus Subgenus Positives Negatives % Positive MCC 

Alphaletovirus All/MileCoV 11 236 4.5% 0.628 

AlphaCoV 

All 1241 9207 11.9% 0.881 
ColaCoV 139 337 29.2% 0.986 
DecaCoV 287 1108 20.6% 0.990 

DuvinaCoV 246 905 21.4% 0.966 
LuchaCoV 68 374 15.4% 0.985 
MinaCoV 239 661 26.6% 0.973 

MinunaCoV 243 772 23.9% 0.985 
MyotaCoV 179 453 28.3% 0.986 
NyctaCoV 267 871 23.5% 0.990 
PedaCoV 360 1147 23.9% 0.977 
RhinaCoV 216 487 30.7% 0.986 
SetraCoV 217 852 20.3% 0.964 
SunaCoV 114 583 16.4% 0.837 
TegaCoV 365 1716 17.5% 0.891 

BetaCoV 

All 1200 10433 10.3% 0.835 
EmbeCoV 422 2741 13.3% 0.925 
HibeCoV 42 378 10.0% 0.973 

MerbeCoV 330 3346 9.0% 0.829 
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NobeCoV 142 1488 8.7% 0.938 
SarbeCoV 381 2600 12.8% 0.865 

GammaCoV 

All 1761 5724 23.5% 0.884 
BrangaCoV 163 321 33.7% 0.985 
CegaCoV 45 337 11.8% 0.943 
IgaCoV 1706 5157 24.9% 0.892 

DeltaCoV 

All 111 2078 5.1% 0.799 
AndeCoV 11 352 3.0% 0.664 
BuldeCoV 89 1403 6.0% 0.859 
HerdeCoV 11 369 2.9% 0.683 

 
Cleavage Prediction 
Some predicted cleavage sites were close enough to the N- and C-termini that the ten amino 

acid window input into the neural network was not filled. These sites with P1 glutamine residue less 
than four amino acids from the N-terminus or less than five amino acids from the C-terminus were 
omitted because although they may be within important localization sequences, their cleavage kinetics 
are likely significantly retarded by truncation. 

Of the 20,350 manually reviewed human proteins, 4,898 were predicted to be cleaved at least 
once with a final average NN score greater than or equal to 0.5. To prove that the cleavages were 
nonrandomly distributed among human proteins, random sequences with weighted amino acid 
frequencies were checked for cleavages. Cleavages occurred at 1.28% of glutamines (4.77% of amino 
acids)[90] or every 1,640 amino acids in these random sequences. Most proteins are shorter than this 
and would, if randomly distributed, follow a Poisson distribution; this data’s deviation from this 
distribution indicates that many cleavages are intentional. 

Enrichment Analysis 
Protein annotation, classification, and enrichment analysis was performed using the Database 

for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8.[91, 92] Tissue (UP_TISSUE and 
UNIGENE_EST_QUARTILE), InterPro, direct Gene Ontology (GO includes cellular compartment (CC), 
biological process (BP), and molecular function (MF)), Reactome pathways, sequence features, and 
keywords annotations were all explored, and only annotations with Benjamini-Hochberg-corrected p-
values less than 0.05 were considered statistically significant. Both enriched and depleted (no cleavages) 
annotations are listed in Tables S2-S10, and my training data, prediction methods, and results can be 
found on GitHub (https://github.com/Luke8472NN/NetProtease). 
 
Discussion 

Enrichment and depletion analyses are often used to probe the importance of annotations in 
many disease states, yet quantification is not possible without experimentation. Table 2 summarizes 
cleavages within and hypotheses about noteworthy pathways, however many caveats exist. First, if a 
protein is central to a pathway, a single cleavage may be all that is required to generate equivalent 
downstream outcomes. Cleaved proproteins such as coagulation factors or complement proteins may 
even be activated by 3CLpro cleavage. Additional exhaustive analysis or inclusion of some measure of 
centrality is required to determine if any insignificantly enriched or depleted pathways are still affected 
at central nodes (as in false negatives). Second, protease-,[56] substrate sequence-,[76, 83, 93-95] 
substrate truncation-,[96] pH-, temperature-, inhibitor type and concentration-, and time after infection-
dependent cleavage kinetics convert this classification problem into a regression problem. Cleavage 
rates among the 11 cleavages per pp1ab vary by at least 50-fold and are uncorrelated with the scores 
from the classifier described here, so these predictions assume that 3CLpro exists in high enough 
concentrations and for a long enough time that rate constants do not matter because cleavage reactions 
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are complete. Third, longer proteins are more likely to be randomly cleaved and may confound 
conclusions about annotations containing them. Cleavages in longer proteins (e.g. cytoskeletal or cell-
cell adhesion components) are no less important than those in shorter sequences, and annotations 
containing proteins with multiple cleavages deviating from Poisson distributions are more likely due to 
highly conserved sequences than simply protein length. Lastly, convergent evolution within the host 
may also result in false positives and may be partially avoided by investigating correlations between 
domains, motifs, repeats, compositionally biased regions, or other sequence or structural similarities 
and other functional and ontological annotations. Ideally, a negative control proteome from an 
uninfectible species could prevent false positives, but coronaviruses are extremely zoonotic. Here, 
depletions in the human proteome are taken to be negative controls. Comparison with a bat proteome 
with deficiencies in many immune pathways, however, may show which human cleavages are 
unintentional or exerted little or no selective pressure before cross-species transmission. 
 

Table 2: Summary of noteworthy cleavages and possible consequences. 
Pathway Cleaved proteins Uncleaved 

proteins 
Possible consequences 

Neurodegeneration APP, tau, eIF4G1, DNAJC13, huntingtin, FUS, ataxin-1  Neuropsychiatric symptoms 
Olfaction/gustation Olfactory receptors, some adenylate cyclases and PDEs GNAL, GNAS, some 

adenylate cyclases 
and PDEs 

Anosmia and ageusia via 
neural cAMP signaling and 
programmed cell death 

Cytoskeleton Microfilaments, intermediate filaments, microtubules, 
spectrin 

 Altered vesicle and virus 
trafficking, DMV formation 

Motor proteins Myosin, kinesin, dynein  Altered vesicle and virus 
trafficking 

Cell adhesion Integrins, immunoglobulins, cadherins, selectins  Disrupted barriers and 
inflammation 

Ras superfamily Rho, Rab, Ran, Arf Ras Altered vesicle and virus 
trafficking, disrupted barriers 

Cilia NPHP1/2/4/5/8, BBS1/4/8/9/12, ALMS1, CC2D2A, RP1, 
RPGRIP1, LCA5, PKD1/2, PKHD1, DNAAF2, IFT80, DNAH5/11, 
DNAI2, and RSPH6A 

 Ciliary dyskinesia, reduced 
mucociliary escalator 
effectiveness, and anosmia 

Coatomers and 
adaptors 

COPII (SEC24A/24B/31A/31B), retromer component VSP13B, 
synergin gamma, GGA1, LYST, and AP1/2/3/5 

COPI, clathrin, 
caveolae, AP4 

Altered vesicle and virus 
trafficking, DMV formation 

Nucleus NPC subunits, importins, exportins, lamins, chromatin 
remodeling proteins (HATs, HDACs, SMC proteins, separase, 
topoisomerase III alpha), some DNA methyltransferases and 
demethylases 

CTCF, all other 
topoisomerases, 
some DNA 
methyltransferases 
and demethylases 

Altered chromatin 
condensation 

Ribosome A few ribosomal proteins (RPL4/10 and RPS3A/19), nascent-
chain detection and degradation (ZNF598, NEMF, and LTN1) 

All other ribosomal 
proteins 

Increased frameshifting 

SRPs SRP68/72kDa SRP9/14/19/54kDa Increased envelope protein 
membrane insertion and 
increased frameshifting 

RNAi DICER1, AGO2, PIWIL1/3  Disrupted antiviral RNAi 
HERVs Syncytin-1/2, PEG10, HERVK-

5/6/7/8/9/10/18/19/21/24/25/113, HERVH-2q24.1/3, 
HHLA1, HERVFC1-1, HERVS71-1 

 Inflammation, inhibited RTs 
and/or integrases which may 
normally produce antiviral 
RNAi 

Vault MVP, TEP1, PARP4, TERT  Unknown 
PRRs TLR2/3/6/8, CLEC4G/H1/H2/4K/10A/12A/13C/13E/14A/16A, 

KLRC3/C4/F1, ACG1, collectin-12, neurocan core protein, 
FREM1, layilin, PKD1, E-selectin, and thrombomodulin, 
NLRC2/3/4/5 and NLRP1/2/3/6/12/14 

 Disrupted innate immune 
responses 

Downstream of 
PRRs 

RIP1/2, NF-κB p65 and p100 subunits, CFLAR, TRIF, IRF2/9, 
DAXX, PI3K/AKT pathway (PIK3CB/G/D, PIK3R2/5/6, PIK3C2A, 
n/i/eNOS, TSC1/2), mTOR pathway (mTOR itself, SREBP1, 
RICTOR, PRR5L, ULK1/2, RBCC1, lipin-3, GRB10, FOXO1/3), 
MAPK pathway (MAP4K2/4/5, 
MAP3K1/4/5/8/9/10/12/15/16/17/18/19/21, KSR2, 
MAPK7/13/15), TFs (c-Jun, ATF2/6, CREB1/3/BP, SP1, 

 Disrupted innate immune 
responses 
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OCT1/2, HSF2/2BP/4/5/X1/X2, Pol I initiator UBTF, Pol II 
initiators TFIID, multiple subunits of SL1 (TBP, TBPL2, 
TAF4/4B/6), and MED1/12/12L/13/15/17/22/23/28, and Pol 
III initiators TFIIIC and SNAPC1/5) 

IFNs and receptors  All IFNs and their 
receptors 

Uncleaved due to 
redundancy 

Downstream of 
IFNs 

STAT1/2/4/5B and ISGs (GBP1, OAS1, PML, mitoferrin-1/2, 
TRIM5) 

 Disrupted innate immune 
responses 

Apoptosis Pro-apoptotic (CASP2/4/5/14), anti-apoptotic (Bcl-2, 
BIRC1/2/3/6) 

 Unknown 

Lipid transport and 
adipokines 

APOA5/B/C4/L1/(a), CETP, MTTP, and LRP2/6, leptin, leptin 
receptor, IL-6 

SR-B1 Correlations with 
dyslipidemia and 
cardiovascular disease 

Ubiquitin-
proteasome system 

E3s (NEDD4/4L, SMURF1/2, WWP1, ITCH, HECW1), cullins, 
proteasomal subunits (PSMD1/3/4/5/8/11/14) 

Ubiquitin PLpro cleavages required for 
full understanding 

Helicases SKI and NEXT subunits (SKIV2L, SKIV2L2, TTC37, PAPD5, 
ZCCHC7, RBM7), exosome subunits (DIS3, DIS3L1), DHX36 

DDX1/5 Enhanced viral RNA stability, 
yet both pro- and anti-viral 
helicases are cleaved 

Coagulation coagulation factors II, III, VIII, XII, XIII, plasmin(ogen), VWF, 
plasma kallikrein, kininogen-1, and fibronectin, PAI-2, megsin, 
A1AT, angiotensinogen, PZI, CBG, LEI, and HSP47 

 Unknown 

Antiproteases A2M and PZP near their bait regions Other small 
antiproteases 

Antiviral activity 

Complement C1/3/4/5  Unknown, but if complement 
is activated, NETosis and 
hypercoagulability 

Redox-active 
centers 

DUOX1/2, NOX5, XO Antioxidants, 
selenocysteine 
synthesis 

Inflammation, ROS 

 
Tissues 
As expected in this data, the most significant tissue enrichment of 3CLpro cleavages are in the 

epithelium, but central and peripheral nervous tissues are also affected due to their similar expression 
and enrichment of complex structural and cell junction proteins. It is noteworthy that major proteins 
associated with multiple neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, 
amyotrophic lateral sclerosis, and spinocerebellar ataxia type 1) are also predicted to be cleaved. Testis 
has somewhat similar expression to epithelium and brain, highly expresses ACE2, and is enriched in 
movement/motility- (subset of structural proteins) and meiosis-related (chromosome segregation) 
proteins, further increasing the likelihood that this tissue is infectible. Spleen, however, does not express 
much ACE2, and its enrichment is likely due to genes with immune function and mutagenesis sites. 
Proteins with greater tissue specificity (3rd quartile) show additional enrichments along the respiratory 
tract (tongue, pharynx, larynx, and trachea), in immune tissues (lymph node and thymus), and in other 
sensory tissues (eye and ear). Combining tissues, tobacco use disorder is the only significantly enriched 
disease, but acquired immunodeficiency syndrome (AIDS) and atherosclerosis were surprisingly 
depleted. 

Cleavages are also surprisingly depleted in olfactory and gustatory pathways given the virus’ 
ability to infect related cells and present as anosmia and ageusia. Olfactory receptors are 
transmembrane rhodopsin-like G protein-coupled receptors that, when bound to an odorant, stimulate 
production of cAMP via the G protein and adenylate cyclase. The G proteins GNAL and GNAS are not 
cleaved, and some but not all adenylate cyclases are cleaved, likely resulting in an increase in cAMP. 
cAMP is mainly used in these cells to open their respective ligand-gated ion channels and cause 
depolarization, but it is also known to inhibit inflammatory responses through PKA and EPAC. Multiple 
PDEs that degrade cAMP but not PDE4, the major PDE in inflammatory and immune cells, are cleaved. 
PDE4 inhibitors have been shown to reduce destructive respiratory syncytial virus-induces inflammation 
in lung,[96] but olfactory receptor neurons are quickly regenerated and sacrifice themselves when 
infected by influenza A virus.[98] The depletion in cleavages and resulting increase in cAMP in these 
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neurons is likely to inhibit their programmed cell death long enough for the virus to be transmitted 
through the glomeruli to mitral cells and the rest of the olfactory bulb. Tongue infection may have 
similar mechanisms, and herpes simplex virus has been shown to be transmitted to the brainstem 
through the facial and trigeminal nerves.[99] 

Gene Ontology 
Cleaved proteins are depleted in the extracellular space (except for structural collagen, laminin, 

and fibronectin mainly associated) and enriched in the cytoplasm and many of its components, 
indicating that the selective pressure for cleavage is weaker once cells are lysed and the protease is 
released. In the cytoplasm, the most obviously enriched sets are in the cytoskeleton, motor proteins, cell 
adhesion molecules, and relevant Ras GTPases, particularly in microtubule organizing centers (MTOCs) 
including centrosomes, an organelle central to pathways in the cell cycle including sister chromatid 
segregation. More specifically, cleavage of cilia-associated proteins may contribute to dyskinesia and 
reduced mucociliary escalator effectiveness associated with many respiratory viruses including HCoV-
229E and SARS and their resulting bacterial pneumonias.[100, 101] Additionally, cilial dysfunction in 
olfactory cells in COVID-19 leads to anosmia, although the main reported mechanism is nsp13 
(helicase/triphosphatase)-centrosome interaction.[102] Coiled coils account for many of these cleavages 
and are primarily expressed in corresponding cellular compartments in the epithelium, testis, and brain. 
Only the coronavirus nsp1, nsp13, and spike proteins have so far been shown to interact with the 
cytoskeleton,[103-105] although many other viruses including influenza A virus,[106] herpes simplex 
virus, rabies virus, vesicular stomatitis virus, and adeno-associated virus[107] also modulate the 
cytoskeleton.[108] In neurons, this allows for axonal and trans-synaptic transport of viruses which can 
often be inhibited but sometimes exaggerated by cytoskeletal drugs often used in oncology.[109-112] 
 Modulation of these structural and motor proteins is required for formation of the double-
membrane vesicles surrounding replicase complexes[113, 114] and for egress. Similarly required for 
vesicular transport, the coatomer COPI, clathrin, and caveolae pathways are untouched by 3CLpro, but 
COPII components are likely cleaved due to their function in selecting cargo[115, 116] and contribution 
to membrane curvature preventing inward nucleocapsid engulfment.[117] Cleavage of many adaptor 
subunits often targeting degradation leaves only the poorly characterized AP4 or other unknown 
pathways to handle egress. Modulators of any of these vesicle trafficking pathways may be effective 
treatments for COVID-19. 

The nucleus is enriched because its nuclear localization signals and scaffolding proteins are 
cleaved. Additionally, many nuclear pore complex proteins and importins/exportins associated with RNA 
transport are also cleaved. Lamins, which are cleaved by caspases during apoptosis to allow 
chromosome detachment and condensation, are also cleaved by 3CLpro. Chromatin-remodeling 
proteins including HATs often containing bromodomains, HDACs, SMC proteins also containing coiled 
coils, separase, and topoisomerase III alpha, but not CTCF nor any other topoisomerases are cleaved, 
complicating the effects on chromosome condensation and global gene expression. HDAC inhibitors 
have been shown to decrease or increase virulence depending on the virus,[118-122] and some but not 
all DNA methyltransferases and demethylases are cleaved, further complicating these effects. Viruses 
benefit from preventing programmed cell death and its corresponding chromosomal compaction in 
response to viral infection (pyknosis), but they also attempt to reduce host transcription by condensing 
chromosomes and reroute translation machinery toward their own open reading frames.[123, 124] 
Relatedly, 28S rRNA has been shown to be cleaved by murine coronavirus, and ribosomes with altered 
activity are likely directed from host to viral RNAs.[125] Ribosome cleavages are depleted here because 
they are required for viral translation, but the few ribosomal proteins that are cleaved tend to be more 
represented in monosomes, not polysomes,[126] indicating that ribosomes that initiate faster than they 
elongate are preferred because they likely frameshift more frequently, allowing for control of the 
stoichiometric ratio of pp1a and pp1ab.[127] If slower ribosomes are not directly more likely to 
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frameshift, they are still less likely to participate if frameshift-induced traffic jams, collision-stimulated 
translation abortion and splitting,[128] and subsequent 60S subunit obstruction sensing and nascent-
chain ubiquitylation, which is especially noteworthy because multiple proteins involved this quality 
control are predicted to be cleaved.[129] Signal recognition particle (SRP) subunits 68/72kDa associated 
with the ribosome are also predicted to be cleaved, and the uncleaved SRP9/14kDa are known to 
encourage translation elongation arrest to allow translocation including transmembrane domain 
insertion (e.g. coronavirus envelope protein) and have been associated with frameshifts.[130-132] In 
fact, frameshifting is a highly enriched keyword in cleaved proteins mainly due to endogenous retroviral 
(ERV) elements, some of which can activate an antiviral response via pattern recognition receptors 
(PRRs).[133] Some also resemble reverse transcriptases and may, like the CRIPSR system in prokaryotes, 
be capable of copying coronavirus genomic RNA to produce an RNAi response via the similarly cleaved 
DICER and AGO.[134] If the latter is true, individuals with distinct ERV alleles and loci may differentially 
respond to SARS-CoV-2 infection and/or treatment, especially exogenous RNAi. Lastly, ribosomal 
proteins are also included in the nonsense-mediated decay (NMD) pathway, which is likely depleted in 
cleavages because NMD has been shown to be a host defense against coronavirus genomic and 
subgenomic RNAs’ multiple ORFs and large 3’ UTRs.[135] It was also shown that the nucleocapsid 
protein inhibits this degradation but often cannot protect newly synthesized RNAs early in infection. The 
selective pressure on 3CLpro may be reversed by this nucleocapsid inhibition and the preferential 
degradation of host mRNAs such that host resources can again be directed toward viral translation. 

In addition to affecting large organelles, 3CLpro is predicted to cleave all known components of 
vault. Vault function has not been completely described, but it has known interactions with other 
viruses.[136-138] TERT, which is associated with vault TEP1 is also cleaved, but is more frequently 
reported to be activated by other viral infections and/or promote oncogenesis.[139] 

Other common viral process proteins are enriched in the epithelium and adaptive immune cells, 
and those cleaved may affect the heat shock response and other small RNA processing. Lactoferrin, an 
antiviral protein that is upregulated in SARS infection,[140] is also cleaved, although one of its 
fragments, lactoferricin, has known antiviral activity.[141] Many PRRs, their downstream effectors, and 
related pathways (PI3K/AKT/mTOR, MAPK, and nitric oxide synthesis, where nitric oxide has conflicting 
effects on viral infection[142,143]) and transcription factors are cleaved, yet no interferons nor their 
receptors are cleaved likely due to their redundancy. Downstream of interferon, however, multiple 
STATs and ISGs are cleaved. Finally, complicating the effects of infection on apoptosis, cleavages in both 
pro-apoptotic caspases and in the anti-apoptotic Bcl-2 and inhibitors of apoptosis exist. 
 Other Pathways and Keywords 

Lipoproteins are a depleted keyword, but multiple apolipoproteins, lipid transfer proteins, and 
their receptors are predicted to be cleaved and, other than the proapoptotic APOL1,[144] are associated 
with chylomicrons, VLDL, and LDL as opposed to HDL, indicating that lipoproteins may contribute to the 
correlations between COVID-19 symptom severity, dyslipidemia, and cardiovascular disease. It was 
recently discovered that SARS-CoV-2 spike protein binds cholesterol, allowing for association with and 
reduced serum concentration of HDL. These findings combined with the 3CLpro cleavages show an 
opportunity for HDL receptor inhibitor treatment, especially antagonists of the uncleaved scavenger 
receptor SR-B1.[145] Cleavage of the adipokines leptin, leptin receptor, and IL-6 provide a mechanism 
for COVID-19 comorbidity with obesity independent of lipoproteins and indicate another potential 
treatment: anti-leptin antibodies.[146, 147] 
 Ubiquitinating and deubiquitinating (DUBs) enzymes are most enriched in the epithelium and 
the nucleus, and cleavages exist in E3 ubiquitin ligases such as NEDD4, E3-supporting cullins, and DUBs 
such as proteasomal base and lid subunits, but not in ubiquitin itself. NEDD4 has been shown to 
enhance influenza infectivity by inhibiting IFITM3[148, 149] and Japanese encephalitis virus by inhibiting 
autophagy,[150] but its ubiquitination of many diverse human viruses promotes their egress. IFITMs 
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generally have antiviral activity (others include HIV-1,[151] dengue virus,[152] and filoviruses[153]), but 
its use as a treatment for COVID-19 should be carefully considered given its varying effects among other 
coronaviruses.[154, 155] SARS-CoV-2 has two probable NEDD4 binding sites: the proline-rich, N-terminal 
PPAY and LPSY[156] in the spike protein and nsp8, respectively. Although the former sequence is APNY 
and is likely not ubiquitinated in SARS-CoV, small molecule drugs targeting this interaction or related 
kinases may be useful treatments for COVID-19 as they have been for other RNA viruses.[157-159] 
Further research is required to compare these cleavages to the PLpro deubiquitinating activity and the 
specificity and function of distinct ubiquitin and other ubiquitin-like protein linkage sites.[160, 161] 

Helicases make up approximately 1% of eukaryotic genes and are enriched in cleavages with 
many containing RNA-specific DEAD/DEAH boxes. Most viruses except for retroviruses have their own 
helicase (nsp13 in SARS-CoV-2) and multiple human RNA helicases have been shown to sense viral RNA 
or enhance viral replication.[162-164] SARS nsp13 and nsp14 have been shown to be enhanced by the 
uncleaved human DDX5 and DDX1, respectively,[165, 166] however subunits of the antiviral, RNA-
degrading SKI and NEXT complexes and the catalytic subunit of the interacting exosome complex are 
cleaved. Additionally, DHX36 cleavage may be motivated by its importance in dsRNA sensing when 
complexed with DDX1 and DDX21, signaling through the similarly cleaved TRIF to type I interferons.[167] 
The remaining cleaved DEAD/DEAH-box helicases tend to interact with RIG-I-like receptor dsRNA sensing 
or are involved in ribosome biogenesis or translation initiation. Their varying proviral and antiviral 
activities make recommending possible therapeutic targets impossible without further 
characterization.[168] 

The coagulation cascade contains many predicted cleavages (coagulation factors II, III, VIII (also 
an acute-phase protein secreted in response to infection), XII, XIII, plasmin(ogen), von Willebrand factor, 
plasma kallikrein, kininogen-1, and fibronectin), but it is not trivial to predict if these cleavages are 
similar enough to those in the normal pathway to be activating or inhibiting even though 3CLpro is 
structurally similar to factors IIa and Xa.[169] Additionally, multiple cleaved serpin suicide protease 
inhibitors (PAI-2, megsin, A1AT, and the less relevant angiotensinogen, PZI, CBG, LEI, and HSP47) are 
related to coagulation, hinting that 3CLpro may increase both thrombosis and fibrinolysis rates or result 
in dose-dependent effects.[170, 171] Angiotensinogen is, however, unrelated to coagulation and is 
cleaved far from its N-terminus, so its effects on the renin-angiotensin system remain unknown. The 
structurally similar A2M has a predicted cleavage outside its protease bait region, however, the addition 
of a missense mutation Q694S would allow cleavage at the same site as factor XIII without reducing 
protease trapping ability as much as large deletions.[172, 173] Additional support for this potential 
exogenous replacement includes presence of serine in the same position in PZP, which shares 71% 
identity with A2M and contains a neighboring GAG site resembling known PLpro cleavages in its primary 
bait region. Most other antiproteases, however, are too small to have many potential cleavage sites 
even though they are a very important response to respiratory virus infection. Serpin or alpha globulin 
replacement therapy or treatment with modified small, 3CLpro competitive inhibitors may be a useful 
treatment for COVID-19.[174] 

In addition to coagulation factors, the complement system can induce expulsion of neutrophil 
extracellular traps (NETs) intended to bind and kill pathogens.[175] NETs, however, simultaneously trap 
platelets expressing tissue factor and contribute to hypercoagulability. The complement pathway is not 
obviously enriched, but many central proteins (C1/3/4/5) are or have subunits that are cleaved, 
indicating viral adaptation to the classical, alternative, and likely lectin pathways.[176-178] Neutrophilia 
and NET-associated host damage are known to occur in severe SARS-CoV-2 infection, so inhibitors of the 
pathway are currently in clinical trials: histone citrullination, neutrophil elastase, and gasdermin D 
inhibitors to prevent release and DNases to degrade chromatin after release.[179, 180] Complement 
inhibition would likely similarly reduce the risks of hypercoagulability and other immune-mediated 
inflammation associated with COVID-19, but effects may vary widely between sexes and ages.[181, 182] 
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Redox-active centers including proteins involved in selenocysteine synthesis are additionally 
depleted in cleavages likely because of their involvement in avoiding cell death and innate immune 
response. Respiratory viruses differentially modulate redox pathways, balancing lysis-enhanced virion 
proliferation and DUOX2-derived reactive oxygen species (ROS)-induced interferon response.[183] In 
addition to depleted antioxidant proteins, cleavage of DUOX1, NOX5, and XO, the former of which are 
upregulated in chronic obstructive pulmonary disease (COPD),[184] indicates that coronaviruses prefer 
to reduce oxidative stress in infected cells, contrary to most COVID-19 symptoms. Given the diversity of 
responses to respiratory virus infections, each proposed antioxidant should be thoroughly evaluated 
before being recommended as a treatment of COVID-19. 
 The impact of post-translational modifications on viral protease cleavage frequency remains 
uncharacterized. Glutamine and leucine, the two most important residues in the cleavage sequence 
logo, are rarely modified, but serine, the next most important residue, is the most frequently 
phosphorylated amino acid. Analysis of keywords showed enrichment of phosphoproteins and depletion 
of disulfide crosslinked, lipid-anchored, and other transmembrane proteins. 
 Lastly, the keywords polymorphism and alternate splicing were enriched, indicating that 
additional variability between cell lines and between individuals are likely. Once health systems are not 
so burdened by the quantity of cases and multiple treatments are developed, personalized interventions 
will likely differ significantly between individuals. 
 
Conclusion 
 Many expected and novel protein annotations were discovered to be enriched and depleted in 
cleavages, indicating that 3CLpro is a much more important virulence factor than previously believed. 
3CLpro cleavages are enriched in the epithelium (especially along the respiratory tract), brain, testis, 
plasma, and immune tissues and depleted in olfactory and gustatory receptors. Affected pathways with 
discussed connections to viral infections include cytoskeleton/motor/cell adhesion proteins, nuclear 
condensation and other epigenetics, host transcription and RNAi, coagulation, pattern recognition 
receptors, growth factor, lipoprotein, redox, ubiquitination, and apoptosis. These pathways point 
toward many potential therapeutic mechanisms to combat COVID-19: cytoskeletal drugs frequently 
used against cancer, modulators of ribosomal stoichiometry to enrich monosomes, upregulation of 
DICER1 and AGO1/2, exogenous lactoferrin and modified antiproteases including alpha globulins, 
upregulation of serpins potentially via dietary antioxidants, complement inhibition, reduction of LDL and 
inhibition of HDL receptor (e.g. by antagonizing SR-B1), anti-leptin antibodies, and downregulating 
NEDD4 or related kinases and upregulating IFITMs. Pathway components with more complex disruption 
that may also deliver therapeutic targets but require elucidating experimental results include PDEs, 
histone acetylation, nitric oxide, and vesicle coatomers. It is also worth further investigating how 3CLpro 
contributes if at all to the correlations between obesity and severity of infection or to viral induction of 
autoimmune and potentially oncological conditions. 
 Expansion of the training dataset to the whole order Nidovirales or class Pisoniviricetes may 
provide more diversity to improve classifying methods if additional protease/cleavage coevolution does 
not invalidate the assumption of cross-reactivity. Issues requiring in vitro and in vivo experimentation 
include characterization of cleavage kinetics, any functional differences between proteases, the 
molecular effects of post-translation modifications, and the individual and population effects of 
polymorphisms in cleavage sequences on susceptibility to or severity of infection. Even though many 
caveats exist without experimentation, similar prediction, enrichment/depletion analysis, and 
therapeutic target identification should be performed for every other viral protease. 
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